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ABSTRACT 

We consider a nonlinear parabolic equation containing the porous medium 
operator and a nonlinear absorption term, which causes the appearance of a 
moving boundary. Basic behavior and regularity results are obtained for the 
solution and the moving boundary under two ditterent boundary conditions. 
Also, the behavior of the solution and the moving boundary as time goes to 
infinity is investigated. 

§1. Introduction 

Suppose  that  'k : [0, ~)---> [0, oo) is smooth ,  strictly increasing with ,k (0) = 0, and 

consider  the pair  of  nonl inear  parabol ic  moving  bounda ry  p rob l ems  

u,°=[ck(uD)]xx+f(u°), t>0, O<x<~,°(t), 

( D )  U P = C o ,  X = 0  and u ° = 4 J ( u ° ) x = O ,  x = 3 , ° ( t ) ,  t > 0 ,  

uD =U0, t = 0 ,  0 < X < O ' ,  

and 

U,~=[4~(UN)]xx+f(uN), t > 0 ,  0 < X < 3 ' U ( t ) ,  

( N )  ' k ( U N ) x = 0 ,  X = 0  and u N = ~ b ( u ~ ) x = 0 ,  x = 3 , N ( t ) ,  t > 0 ,  

N u =Uo, t = 0 ,  0 < x < c r .  
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Here it is assumed that co > 0, [ : [0, c, ,]+ R is C' and nonincreasing with [(0) < 0, 
and that u,, is a given initial value on the x-interval [0, o']. It is required that u o 

and u N remain nonnegative for all t => 0 and 0 < x =< cr, and so the assumption 

that f ( 0 ) <  0 generally causes the appearance of the moving boundaries 3 , ° (0  
and ~/N(t). If u j, j = D or N, is the concentration of a material in a medium, then 

~b(uJ)xx is the diffusion term and [(u j) the absorption term. When j = D the 

concentration is held constant at the left boundary and when j = N the left 

boundary is sealed so that there is no flow out or into the medium at the left 

boundary. The moving boundary ~/J(t) corresponds to the penetration depth of 

the material. 
The case when 4,(u) = du where d > 0 has been studied in Crank and Gupta 

[10] and Lyons and Martin [19]. The main problem studied here is when 4) is 

nonlinear [an important case is when 4 , (u )=  du" where d > 0  and m > 1[. 

Although the general types of behavior for the solution in this case is similar to 

the semilinear case, there are several ditficult technical problems that arise. The 

principal technique is to apply results from the general theory of nonlinear 

semigroups to obtain information on the existence and behavior of solutions to 

this concrete problem. 
This paper is divided into three sections. The first part deals with the existence 

of (generalized) solutions to (D)  and (N) and is based on the theory of nonlinear 
semigroups in the space ~ ' (0 ,  cr). In particular, solutions are constructed using 
approximations and the Crandall-Liggett theorem for the generation of semi- 

groups in general Banach spaces (see, e.g., Brezis and Pazy [7], Evans [11[, and 

Goldstein [14]). (See also Fasano and Primicerio [13].) The second part gives 

information on the behavior of solutions as t ~ m  and, in particular, the 

asymptotic stability of the equilibrium solutions (see, e.g., Alikakos and Rosta- 

mian [1], Aronson, Crandall and Peletier [4], Berryman and Holland [6], 
Kamenomostskaya [16] and Lyons and Martin [19]). The final part considers 

certain differentiability properties of the generalized solutions (see, e.g., Aron- 

son [2], Aronson and Benilan [3], Crandall and Pierre [9], Evans [12], Kalash- 

nikov [15], Kruzhkov [17] and Oleinik et al. [20]). 

§2. Basic notations and results 

The fundamental existence and behavior results for solutions are developed in 

this section. Throughout this section it is assumed that ~b is a function with the 

following properties: 

(2.1) 4~:R--->RisC 2, 4 ) (0)=0 and ~b'(r)>0 i f r ~ 0 .  
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Principal examples are the functions qb(r)=dr" where d > 0  and m > 1. In 

addition it is assumed in this section that 6, cr and co are numbers with Co > 6 => 0 

and o-> 0. Define the class of functions o%~ by 

~ =- {f : R ~  R : f is C ~ and nonincreasing, f(~) > 0 

(2.2) for s c < 6 and f(~) < 0 for s c > Co} 

and the class of functions ~ by 

(2.3) @~ --{u : [0 ,o ' ]~ [& co]: u is measurable and nonincreasing}. 

The class 98 is considered as a subset of ~ -= ~ '([0,  o']; R) where 

S/ lul,  =- lu(x)ldx for all u ~ ' .  

Note in particular that ~ is a closed, bounded and convex subset of Lf'. The 

class of functions ~ will be expanded to a wider class later [see (2.17)]. 

For the first part of this section we consider the nonlinear initial-boundary 

value problems 

u,=6(u)x ,+f(u) ,  t > 0 ,  0 < x < t r ,  

u(x,O)=uo(x), 0 < x  < or, 

(2.4) and either 

u(O,t)=Co, u ( m t ) = 6  or 

~b(u)x(0, t ) =  0, u(~r,t)=6, 

where Uo E 98 and f E ~,. As opposed to studying (2.4) directly, we set up a 

corresponding abstract Cauchy problem in the space Y?'. First define the porous 
medium operator P on 37 t by 

Pu = d~(u)" for all u E D ( P ) -  {u ~ Le': 4~(u), 4~(u)' are abs. cont. 

(2.5) and ,b(u)" E 3~}. 

Now for each 6 and f E ~ define the operators A 6.t° and A 8.tN by 

D(ADr) = {u E ~ f3 D(P) :  u(0) = co, u(o') = 6}, 

(2.6) 
A~,~u = &(u)" + f(u) for all u E D(a~t), 

and 



84 s.  G U T M A N  AND R. H. MARTIN,  JR. lsr. J. Math. 

D(A~.t) = {u @ @~ M D ( P ) :  &(u)'(O) = O, u(o') = 6}, 

(2.7) N 
As.ru = & ( u ) " + f ( u )  for all u E D(A~.r). 

Unless needed for clarity, the subscripts 6 and [ are normally omitted in writing 

the operators in (2.6) and (2.7). Also, it is assumed throughout that j E {D, N} so 
that A t denotes the operator in (2.6) if j = D and the operator in (2.7) if j = N. 

Note that the initial-boundary value problems (2.4) can be written as an abstract 

equation in GP~ in the following manner: 

> u(O)= j E{D,N}.  (2.8) u'(t)  = A~.tu(t), t = 0, u,,, 

In order to apply the Crandall-Liggett theorem on the generation of nonlinear 

contraction semigroups, we establish the following properties for the resolvents 

of the operators At. 

LEMMA 1. Suppose that A i = A ~,t is defined by (2.6) or (2.7) and that h > O. 

Then I - h A  t is 1-1 on D(Ai ) ,  

(2.9) R ( I -  hA j ) ~  {u - hA tu : u ~ D(AJ)}D 98 

and 

(2.10) I(I-hA')-'u-(l-hAJ)-'vl,<=lu-vl, forallu,  v E ~ .  

INDICATION OF PROOF. From well-known facts about the dissipativeness of the 

porous medium operator P in the space ~1 (see, e.g., [11]) together with the 

assumption that f is nonincreasing, it is easy to show that 

(2.11) I ( I -  hA J)u - ( I -  hA J)v l~ >-t u -  v I, 

for all u, v E D ( A  J). This shows that I -  hA j is 1-1 and that (2.10)is valid for all 

u,v E ~ t ( I -  hA J). Thus, this lemma will be established once it is shown that 

(2.9) holds. Since A j is closed [i.e., the set (u, AJu)  with u E D ( A  t) is closed in 

~ 1 ×  ~1] we see from (2.11) that ~ t ( I -  hA j) is closed in &ol and so it is only 

necessary to show that ~ (I - hA j) contains a dense subset of ~ .  Therefore, we 

show that if z is a continuous member of ~8, the equation (I - h A t ) u  = z has a 

solution u ~ D ( A J ) .  Assume for definiteness that j = D  and consider the 

equation 

u(x)-h ~(u(x))+/(u(x))=z(x), 0 < x < ~ ,  u(0)=Co, u0r)=,S. 

(2.12) 



Vol. 54, 1986 POROUS MEDIUM EQUATION 85 

Defining fi(s ¢) = 6-~(s ¢) for ~b(~5)- 1 =< s ¢ =< (b(co)+ 1, fi(~c) = 6 - ~ ( 6 ( 3 ) _  1) for 
~¢<~b(3)-1  and fi(sc)=~b '(6(Co)+1) for ~¢=<~b(co)+l, we have that fi is 
continuous and uniformly bounded. It now follows that the equation 

f i ( v ) -  hlv" + f(fi(v))] = z, 
(2.13) 

,J(0) = 4~(Co), v(~r) = ~ ( a )  

has a solution. Observe that if L is the inhomogeneous operator Lv = - h v "  
with D ( L ) = { v E ~ ' : v , v '  are abs. cont., v"ELe '  and v(0)=&(co),  v ( t r )=  
~b(8)}, then L has a compact inverse defined on ~ ' .  Therefore, the operator 

mapping v ~ L - ' ( f i ( v ) - h f ( f i ( v ) ) )  is completely continuous and uniformly 
bounded on & el, and so it has a fixed point by Schauder's Theorem. Any such 
fixed point is a solution to (2.13). An easy application of the maximum principle 

shows that any solution v to (2.13) must satisfy ~b05)_- < v(x)<=6(Co) for all 
x E[0,~r]. Thus, f i ( v (x ) )=6- ' (v (x ) )  for all x~[0 ,~ r ]  and it follows that 

u ( x ) -  ck-'(v(x)) is a solution to (2.12) and that 8 <_- u(x)<= Co for all x E [0, tr]. 
To complete the proof we need to show that u is nonincreasing on [0,tr], and 

since ~b -~ is increasing it suffices to show that the solution v to (2.13) is 
nonincreasing. Suppose, for contradiction, that there is an Xo E (0, o-) such that 
v '(xo)>0.  Since v(tr)=ck(,5)<=v(x)<=cb(Co) = v(O) for all x C[0 ,o ]  we can 

deduce that if 

x~ =inf{x E [0 ,xo ] :v ' (y )>0  for x = y  =<xo} and 

x2= sup{x ~ [ x o , t r ] : v ' ( y ) > 0  for Xo=< y =< x} 

then v"(x2)<= 0 and v"(x,)>= O. However, since z is increasing and sc~ $-'(sc) - 
hf(cb-'(¢)) is strictly increasing on [$(~),  $(Co)], we have that 

1 1 
o"(x ) = --~ z(x ) + h lCb-'(v(x ) ) -  hf(ck-'(v(x )))] 

is strictly increasing on [xl, x2]. This is impossible since v"(x,)>= 0 and v"(x2)=< 0, 
and we conclude that v (and hence u) is nonincreasing and completes the proof 
indication of Lemma 1. 

Inequalities for solutions also play an important role in these techniques. If 

u,v E ~ '  we write u =< v only in case u(x)<~ v(x ) for  almost all x E [0,o-]. If 

f,,f2 E ~8 then f, _-< ./:2 only in case f,(~) _-< f2(~) for all ~. Note that if & _-< 82 then 
~;~, D ~ ,  and so it makes sense to write fl = f2 whenever f~ E ~8,, f2 E ~ and 

8,-<82. 
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LEMMA 2. Suppose that j E {D, N}, that (8,,~) E [0,Co) x fiB, and w, E ~ ,  for 

i = 1,2. Suppose further that & <= 62, fl <=f2 and wl <= w2. Then 

(2.14) (I  - hA~,.r,)-'w, <= (I - hA~2.r2)-Iw2 [oral lh  > O. 

REMARK 2.1. Note that Lemma 2 essentially asserts that the map 

(8 , f ,w) - - -~( I -hA~.r ) - 'w  of [0,Co)× ff~ x ~ into LP 1 is increasing in each of its 

components for any h > 0. 

PROOF OF LEMMA 2. Set/3 = ~b -1, B~ = A~,.t, and u, = ( I -  hB,)-lw, for i = 1,2. 

Setting v, = ok(u,), we have /3(v~)-h[v '~+~(/3(v,))]  = w, for i =  1,2. Assume 

first that w, and w2 are continuous and let XoE[0,(r] be such that 

vl(x , i ) -  v2(Xo)  = m a x o { v l ( x ) -  v2(x)}. 

Suppose, for contradiction, that v~(xo)- v~(Xo) > 0. The continuity of w, and w2 

and the boundary conditions are seen to imply that v'~(Xo) - v~(xo) <= 0, and since 

w,(xo) <= w2(xo) it follows that 

0 <= - h (v'((Xo) - o"(xo)) 

= w ,(Xo)  - W d X o )  - [(I  - h f , ) ( / 3  ( v  l(Xo))) - ( I  - h f 2 ) ( / 3  (VdXo)))] 

<= - (I  - hfl) (/3 (vl(xo))) + (I  - hf2) (/3 (v2(xo))). 

However, f2 --> fl implies I - hf2 <= I - hfl, and so 

(I  - hfl)(/3(vl(xo))) <= ( t  - hf2)(/3(v2(xo))) <= (I  - hfl)(/3(v2(xo))). 

This is impossible since I - hf, is strictly increasing and Vl(Xo) > v2(xo) implies 

that /3(v,(xo))>/3(v2(xo)). Therefore, vl <= v2 and hence 

u,  = / 3 ( o l ) < = / 3 ( v ~ )  = u2. 

Since every Wl and w2 can be approximated by continuous ffl E ~8, and if2 E ~ 

with if, <= w, < w2 <= if2, we see that Lemma 2 is true. 

The results of Lemma 1 show that A j is a dissipative operator on D ( A  ~) and 

R ( I  - hA  j) D D8 = D ( A  ~) for each h > 0. By the CrandalI-Liggett theorem [8], 

(2.15) S~.t(t)u--!!rn I - n A B .  r u, t = 0 ,  u E ~ ,  

exists, and S j = S~.r is a (Co) contraction semigroup of nonlinear operators on 
~a : 
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(S1) SJ(O)u = u, SJ ( t+s )u  = SJ(t)SJ(s)u for all t, 6 =0 ,  u C 98; 
($2) t--->S'(t)u is continuous from [0 ,~) in to  LZ' for each u E ~ ;  

(S3) IS'(t)u- S'(t)vl,<=lu-vl, for all t >_ O, u, v E ~ ,  
($4) SJ(t)u < SJ(t)v for all t =>0 whenever u,v ~ @~ with u < v. 

The order preserving property ($4) follows easily from Lemma 2 and the 
exponential formula (2.15). In fact, it is easy to see that the following is valid. 

LEMMA 3. Suppose that j E {D, N}, that 0 <= 6, <= ~2 < Co, that [, ~ ~ ,  and 
f2 E ~ with [~ <= ]:2, and that u~ E @~, and u2 E ~ with u, <= u2, then 

(2.16) S~,.t,(t)u, <- S~.t~(t)u2 for all t >= O. 

For each U o E ~ ,  the function u defined on [0,o-]x[0,oo) by u(x , t )=  

[S~.t(t)Uo] (x) is a generalized solution to (2.4) satisfying the boundary conditions 
u(0, t ) =  Co, u(tr, t) = 6 if j = D and the boundary conditions ¢(u)x(0,  t ) = 0 ,  

u(tr, t) = 6 if j = N. A crucial point in these results is that f (6)  => 0, and hence the 
solutions naturally remain larger than 8 by the maximum principle. In fact, when 

> 0 and the initial value Uo is sufficiently smooth, the generalized solution 

defined by the semigroup S~.r is actually a classical solution to (2.4). 

LEMMA 4. Suppose that 6 > 0, f E ~8 and Uo E D(A~.I) is infinitely differenti- 
able. I f  

u(x,t)-[S~Xt)](x) for(x,t)~[O,a]×[O,~), 

then u is the classical solution to (2.4). Also, u(x, t )  is C 2 in x and C 1 in t on 

[0, tr] × [0, oo), and (x, t)--> ax~xu (x, t) exists and is continuous on (0, ~)  × (0, oo). 

PROOF. Let ~bs E C2(R) be such that ~b~(u)>0 for all u E R  and ~bs(u)= 

¢ ( u )  for [u I_- > & By Theorem 5.2, p. 564, and the arguments from p. 516 of 
Ladyzenskaja et al. [17], there exists a unique classical solution u(x, t )  to 

u, = ¢~(u)x, +f(u) ,  

u ( O , t )  = Co, u(t, ~ )  = & 

u(x ,O)  = Uo(X), 

and that ax=u(x, t) is continuous on (0, a ) ×  (0,oo). Since f(co)<= 0 and [(6)=> 0, 

the maximum principle (see Protter and Weinberger [21, Theorem 3.12]) implies 

that 6 -< u(x,t)<= co for all ( x , t )E  [0,o-] x [0,~). Thus, ¢~(u(x , t ) )= ¢k(u(x,t)) 

and u is a classical solution to (2.4). Noting that the function u :[0,~)---~ZP 1 

defined by [u(t)](x)= u(x, t )  is an LPl-solution to (2.8) with j = D, and then 
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applying Theorem 1.5, p. 115, of Barbu [5], shows that u (t) = S~.t(t)Uo and since 

the case j = N can be handled similarly, this completes the proof of Lemma 4. 

Our main concern is to consider equations of type (2.4) with a large class of 

nonlinear terms f. In particular, we remove the restriction that f(0)_-> 0 when 

6 - -0 ,  so that classical solutions to (2.4) do not necessarily remain positive. 

Define the class of functions by 

(2.17) ff  = {f : R---> R : f  in C', nonincreasing, and f(~:) < 0 for all ~ > Co}. 

It is clear that ~ D , ~  for each 6 >0.  Also, if f ~ o~ with f (6)_-0  then f, 

modified so that f (~ )>  0 for ~ < 6, is in ~8. Allowing f (0)< 0 leads to the 

following moving boundary problem: 

u~x,t)=c~(ui(x,t))xx+f(uJ(x,t)), t > 0 ,  0<x<yJ ( t )=<c r ,  

uJ(x,O)=uo(x), 0 < x  < 

(2.18) uJ('yJ(t),t)=d~(uJ(yJ(t),t))x=O i f t > 0 ,  yJ(t)<cr, 

uJ(x,t)=O ifyJ(t)=<x=<o ", 

uJ(O,t)=co i f j = D  and ~b(uJ(0,t))x=0 i f j = N ,  t > 0 .  

In order to write (2.18) as an abstract Cauchy problem it is necessary to 

consider multivalued operators. Define the domains @° and ~ ~ by 

D ° ={UE~onD(P):u(O)=co, u(cr)=O} and 

(2.19) ~N={UE~onO(P):d~(u),(O)=O,u(tr)=O}" 

Notice that @J=D(AJo.t) for jG{D,N} and any r e d o .  Now define the 

multivalued operators A i for j E {D, N} and f E ~ as follows: 

(u,v)EA j only in case u E ~  j, 

v (x )=  4~(u)"(x)+f(u(x)) for almost all x ~ [0,tr] 

(2.20) 
such that u (x) > 0, v (x) = 0 if u (x) = 0 and f(0) = 0, 

and f(0) =< v (x) =< 0 if u (x) = 0 and f(0) < 0. 

If f E ~o then A i = A ~.t and we see that A i is multivalued only in case f(0) < 0. 

Note also that if f G ~: and we define the relation f by 
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(2.21) 

then 

{f(¢)} 

{f(o)} 

[f(o),o] 

if sc > 0, 

if ~: = 0 and f(0) _-> 0, 

if ~: = 0 and f(0) < 0, 

( u , v ) E A ~ o n l y i n c a s e u E ~  j and 

(2.22) 
v(x) ~ 4 (u)"(x) + f (u(x))  for almost all x E [0, ~r]. 

We have the following fundamental result for these operators Ai: 

THEOREM |.  Suppose that j E {D, N}, h > 0 and f E ~. Then I - hA ~ is 1-1, 

~I(I - hA~)D ~o = @J, 

(2.23) I ( l - h A ' r ) - ' u - ( l - h A ; ) - ' v l .  < l u - v l .  forallu, vE@,,, and 

(2.24) ( I - h A ~ )  ~u>=(l-hA~) ~v forallu, vE@,,withu>=v. 

Furthermore, 

(2.25) S}(t)u=-!im l - n A  r u, t = O ,  uC@,, 

exists in 2P ~ and S} has the following properties: 
(S1) S~O)u = u, SXt + s)u = S~t)S~s)u for all u E ~ ,  and t,s >= O, 
($2) t--* S~t)u is continuous from [0,oe) into ~ '  for each u E ~o, 

($3)  I S' t)u - S'r(t)v I, --<1. - v I, for all  t >-_ O, u, v E @,,, 
($4) S~t)u <- S~t)v for all t >= 0 whenever u, v ~ @o with u <= v. 

Observe that the properties (S1)-($4) for the semigroup S~ are precisely the 

same as those for the semigroup S/,.t given previously. Since the porous medium 
operator P is dissipative and the multivalued extension )~ of f in (2.21) is also 
dissipative, it is easy to check that A~ is dissipative and hence 

J ( l - h A ~ ) u - ( I - h A ~ ) v J , > = J u - v l ,  fora l lu ,  v@5~ j, h > 0 .  

This shows that (2.23) holds whenever u and v are in ~ (I - hA ~). Thus the main 

part of the proof of Theorem 1 is to show that Y~(I -hA~)D~o,  and to 

accomplish this we use the following lemma: 

LEMMA 5. Suppose that f ~ ~ and v E ~o. Suppose further that {&}]~ is a 

nonincreasing sequence in [0, c~,) with l imk~ & = 0 and that {fk }~ is a sequence of 

functions with f~ E , ~ ,  f~+~ <= fk for k >-_ 1, and 
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(2.26) ~im h (~) = f(~) uniformly for ~ E [r/, c,,] for each 71 > O. 

Also let { vk } ~ be any sequence in LP ' such that vk E @~, v~ + , <-_ vk for k > 1, and 

lim [ vk - v 1, = O. 

Then it follows that v E ~ (I - hA ~), that 

(2.27) ( l  J -~ J -~ -hA~+,.t~+,) v~+l<=(l-hA~.t~) vk forh >O, k = l ,  

and that 

hA~d,) v~ = (I - hA}) ~v uniformly on [0,o'] for each h > 0 .  (2.28) Jim (I - ' -' 

PROOF. Setting uk = ( I -  hA~d~)-~vk, we have that 0 _--- uk+~ < uk by (2.14) in 

L e m m a  2, and hence u = l i m k ~  uk exists both in ~ '  and pointwise on [0, o] ,  and 

so u E @o since @,, 3 ~,k and @,, is closed in ~ .  Also, by definition, 

(2.29) 4' (uk)"(x) = uk (x) - vk (x) _ fk (uk (x)) 
h 

and since uk, vk and fk (uk) are uniformly bounded,  there is an M > 0 such that  

]4)(uk)"(x)l<--<_M for almost all x (~[0 ,o ' ]  and k=>l .  Thus {,J,(uk)'}~ is an 

equicontinuous and uniformly bounded sequence and it follows that &(u) is 

differentiable on [0,o-] and that uk ~ u and cb ( u ~ ) ' ~  (b(u)' uniformly on [0, o'] as 

k ~ oc. If r = min {x E [0, o-] : u (x) = 0} then uk (x) = u (x) > 0 for x E [0, r),  and 

by (2.26), f k ( u k ( x ) ) ~ f ( u ( x ) )  uniformly on [0,p] for each p < z. Thus, by (2.29), 

4,(u)"(x) = u ( x ) -  h f (u (x ) )  for almost all x E [0,~') 

and it follows that if 

w ( x ) =  {~b(u)" (x )+f (u(x ) )  f o r 0 _ - x  < r 

- h - Iv (x )  for z-<_ x _----- o" 

then u - hw = v. Since it is clear that u E D(A~) the proof will be complete  once 

it is shown that w C A~u [i.e. (u, w ) E  A~]. To show this it suffices to show that 

- h-~v(x)  => f(0) for almost all x (~ [z, o']. If z -< x < y =< o" then 

h~b(uk)'(y)-hq)(uk)'(x) = fxY [Uk ( r ) - - v ( r ) l d r - h l x ' f k ( u k ( r ) ) d r  
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where we used that fact that f --- fk+~ =< fk. Letting k ~ ~ and using the facts that f 

is continuous and u = & ( u ) ' = 0  on [~',o-] shows that 

0<= - f f  v(r)dr - h f f  f(O)dr = - ~Y v(r)dr - h(y - x )f(O). 

Thus, f (0 )=  < - h  ~ ( y - x ) ' f ~ v ( r ) d r  and letting y---~x+ shows that f (0 )=  < 

- h - ' v ( x )  for almost all x E [~-,o-], and completes the proof of Lemma 5. 

COMPLETION OF THE PROOF OF THEOREM 1. Let f E ~ for k => I, let 

'ok :[0,~)--~[0,1] be a smooth function such that "ok(0)=0 and 'Ok(U) = 1 for 

u >= 1/k. Assume also that "Ok-<-"Ok+. for all k and define fk on [0,:e) by 

fk(U)--~Jk(u)f(u) for all u_->0 and k=>l.  If v~@,,  and we take & = 0  and 

vk -- v for all k _-> 1, then it is easy to see that each of the suppositions in Lemma 

5 is fulfilled. Thus v E Y t ( I -  hA}) and it follows that ~ ( I  - hA})D @(A}) = ~,, 

for all h >0 .  Since it has already been indicated that (2.23) holds, the 

Crandall-Liggett theorem implies that the limit in (2.25) exists and if S'M)u is 

defined by this limit, then (S1)-($3) are satisfied. The fact that (2.24) follows from 

(2.28) and (2.14) in Lemma 2, and (2.24) along with (2.25) show that ($4) is also 

true. This completes the proof of Theorem I. 

By a combination of Lemma 5 and a theorem of Goldstein [13] (see also Brezis 

and Pazy [7]) we have the following result for the approximation of the 

semigroups Si: 

PROPOSITION 1. 

Lemma 5. Then 

(2.30) 

and 

Suppose that f ~ ~, v C @o, and that &, vk and fk are as in 

S~,rk(t)vk => S~t)v & r k  >= 1 

(2.31) S~t)v = lim S~k.rk(t)vk 
k ~  

in ~ ' ,  uniformly for t in bounded intervals. 

§3. Asymptotic behavior 

In this section we continue to use the notations in §2. If j E {D, N}, f E ~ and 

S~ = {S}(t): t ~ 0} is the nonexpansive semigroup on @o defined by (2.25), then 

the function 
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(3.1) u i ( x , t ) -  [SRt)uo](x), (x,t) E [0, o-] x [0,~) 

is the generalized solution to the moving boundary problem (2.18). Since 
u J( • , t ) E  9o, u'(x,t) is decreasing in x E [0,tr] and the moving boundary 3 / c a n  
be defined directly from u j by the relation 

y'(t)  =- inf{y E [0, tr]: ui(x, t) = 0 for all x E [y, or]}. 

The main purpose of this section is to show that (2.18) has precisely one 
equilibrium solution in Do, and that for each UoE ~o, the solution to (2.18) 
approaches the equilibrium solution as t ~ .  Stated in terms of the semigroup 
S~ we have the following basic result: 

THEOREM 2. Suppose that j E {D, N}, that f E ~ with [(0) =< 0, and that A~ is 

defined by (2.20) and S~ is defined by (2.25). Then there is a unique w* E ~ = 
D (A ~) such that 

(3.2) OEA~w*j and S~t)w*=wj* [orallt>=O. 

Also, 

, ~  * in Le ~ and pointwise on [0, ~r] for all u E 9o. (3.3) lim S~t)Uo = w j 

Moreover, if f(O) < 0 and 

3'7 ~ inf{y E [0,or]: w~(x)=Ofory <=x <-_-o'} 

then for each uo ~ 9o, 

(3.4) !im y ' ( t )  = 3'7 

where yJ(t) -- inf{y E [0, cr]:[S~t)Uo] (x) = 0 for y <_ x <= or}. 

For the proof of this theorem we use two lemmas, each of which is assumed to 

be with the suppositions of the theorem. 

LEMMA 6. Suppose that O(x)=-0 and co(x)=-Co for all x E [0,o-]. Then 

(3.5) S~t)O>-_S~s)O and S~t)co<S~s)co forallt>=s>-O 

• E ~J such that and there is a w j 

(3.6) S~t)O ~ w* J, S~t)co a s t - ~ ,  

where the limits are both pointwise and in ~ on [0,tr]. Moreover, S~t)w* - w*i 
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[or t>=O and 0 E A~w*).  In particular, there is a 3'* E[0, cr] such that 

~(w*~)"+f (w*~):o  for 0<x<3',*, 

(3.7) w*(3'*)=0, ~(w*) ' (3 '*)=0 i[3"*<cr, 

w*(0)=co i f j = D  and ~b(w'~)'(0)=0 i f j = N .  

Since S~t) preserves order on Do [see ($4)] and since 0 =< uo =< Co for PROOF. 

all UoE Do, we see that S ~ t - s ) O  => 0, and hence 

S~t)O = S ~ s ) S ~ t -  s)O >= S~s)O 

for t => s ~ 0 .  Similarly, S~t - S)Co <- co and hence 

S~t)co = S~s )S~ t  - s)co <= S~s)co 

for t _--> s > 0. This shows that (3.5) is true and also that there are z *, z * E Do with 

z ,* =< z 2* such that 

l i m S ~ t ) 0 = z ~  and !imS~t)Co=Z* 

pointwise on [O,o'], and hence in ~ '  by monotone convergence. By continuity 

and the semigroup property, 

S~t)z* = !im S~t)S~s)O = lim S~(t + s)O = z* 

and hence S~t)z* =- z* for all t _--> 0. Similarly, S~t)z* =- z 2. for t > 0 and this 

lemma will be established once it is shown that z T = z 2*. 

Applying Theorem 1.5, p. 115, of Barbu [5], it follows that (z*,O),(z*,O)E 
A ~, and so z ~', z 2. E D ( Using this fact and setting 3' ~ = inf {y E [0, o ' ] :z  *(x)= 0 

for y =<x -<o'} for i = 1,2, shows that the pairs (z*,y*)  and (zLy2*) are each 

solutions to the free boundary problem 

~ ( w ) " ( x ) + / ( w ( x ) ) = o ,  x ~[0,r), 

w(3') = ~b(w)'(3') = 0 if 3' < or, 

(3.8) 
w(3') = 0 if 3' = e, 

w(0)=co i f j = D  and oh(w)'(0)=0 i f j = N .  

If j = N then clearly z ~' --- 0. Since 

~b (z*)"(x) = -f(z*2 (x)) => 0 for x E [0, 7"], 
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we see that ~b(z*)' is nondecreasing on [0,7*]. Since z* [and hence ~b(z*)] is 

nonincreasing and since ¢ (z  *)'(0) = 0 when ] = N, we immediately conclude that 

y* =0 .  Thus z* - z* = 0  when j = N. Now suppose that j = D. Since z* _-< z* 

we have that 3'* --< Y*, and hence both zT and z* satisfy the differential equation 

in (3.8) for x E [0, y*]. From this it follows that 

[¢ (z *) - 4~(z T)]"" [4'(z * ) -  ¢ (z  *)] = - [f(z * ) -  f ( z  *)]" [4~(z * ) -  ¢ ( z  *)] 

for all x E (0, 3'*). Since ~b is increasing on [0,0~) and f is nonincreasing, the right 

side of this equation is nonnegative, and so 

I 
3't* 

, >-_o. 

Integrating by parts and using the boundary conditions 

qb(z*)(O) = ~b(z*)(O) = ~b(co) and ~b(zT)(3'T) = ¢ (z*) ' (3 '* )=0 ,  

it follows that 

f "/I * 
, { [4 , ( z* ) -  ¢ (zT) l ' / 2=  < 4,(z.,*)'(3'T)¢(z*)(3'*). 

Since x--*~b(z*)(x) is nonnegative and nonincreasing, we have that 

~b(z*)'(3'T)(b(z*)(3'*)<= O, and hence ~b(z*)'(x)~ ~b(z*)'(x)for all x E[O,3,*]. 

Since ~b(z*)(0)= ~b(z*(0))= ~b(co) when j = D we conclude that cb(z*)(x) -~ 
cb(z*)(x) on [0,3'*]. From this it follows that z* = z* on [0,a]  and the proof of 

Lemma 6 is complete. 

• E @J and 3"* LEMMA 7. Suppose that w s are as in Lemma 6 and that uo ~ ~o 

with uo >- w * j. I f  3"* < tr then 

(3.9) [SXt)uo-w*j l ,<=luo-w*l ,+ f '  f " t " f ( [S~ ' )uo] ( x ) )  dxd'r f o r a l l t > O  
jo Jvj" 

where 

7i(t)=_inf{y~[O,~]:[S~t)uol(x)=Ofory<-_x<-_@} foreacht>O.  

PROOF. For each k _-> 1 let 7/k be a smooth, nondecreasing function on 

[1/k, oo) such that T/k(1/k)----O and ~ /k(u)=l  for u>-_2/k. Assume also that 

r/k+~----> ~/k on [1/k, oo) for k => 1 and define f k ( u ) -  ~ ( u ) f ( u )  for u _->0. Then 
[k(1/k) = 0 and by appropriately defining fk(u) for u < 1/k, we may assume that 

fk E ~t/k and fk+~ =< fk for all k _-> 1. Now set 

~k = {v E D(A{/k.t~): v is infinitely differentiable and v _-> w*} 
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and let v E ~k. Then the function 

u(x, t) =- [ S~;~.rM )vl(x ) 

is a classical solution to 

u, = cb(u)~x + fk(u), t > 0 ,  

uk(cr, t) = l/k, 
(3.1o) 

uk(0, t ) = c .  i f j = D  and 

u~(x,O)=v(x),  0 < x  < o  

POROUS MEDIUM EQUATION 

> ~ O "  f o r t = O ,  O ~ x  < 

0 < x  <o' ,  

&~b(uk(O,t))=O i f [  = N, 

95 

p'(t) = f f" u,dx + f ;  u,dx 

= f,~i,(.)~ +r~(~)-~(w*)~-r(w*)l~x + f~ t~(u)~ +~(u)l~x 

: 

= [4 , (u)~  - 4 , ( w * ) x l : : ~ "  + [ 4 , ( u ) ~ l ; .  

+ f f ' l f k ( u ) - f ( w * ) ] d x +  f~. fk(u)dx 

= - [ 4 , ( u ) ~ ( 0 ) -  4 , ( w * ) x ( 0 ) ]  

+,b(u)x(,~)+ ff  tr~(u)-r(w*)ldx + f~] f~(u)dx. 

6 and since u satisfies (3.10), if 

p(t) =- [u(x , t ) -  w*(x)]dx 
I 

then, suppressing the variables, 

for t =>0, 

(see Lemma 4 in §2). Also, by Proposition 1 in §2 and property ($4), the facts 

that v _--- w* and ]'k => f imply that 

S~/k.t(t)v >-_ S~t)v >= S~t)w* = w*, 

and so u(x,t)>= w*(x) for all t =>0, 0 =  < x =< o-. Since w* satisfies (3.7) in Lemma 
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Since u => w* and u(0, t ) =  w*(0) if j = D, it is easy to see that 

4,(u)~ (0) - 4,(w*)x (o) => o. 

Since ~b(u)is nonincreasing, ~b(u)x(o-)_-<0 and it follows that 

f/ p'(t) < [ f k ( u ) - [ ( w * ) l d x  + [k(u)dx. 
) * 

Integrating each side of this inequality from 0 to t, 

f'l' f'f/ p(t)-p(O) < [h(u)-[(w*)]+ h(u) 

and it follows that if v E ~k and u is the solution to (3.10), then 

lu(. ,t)-w*l.<-_lv-w*l,+ [f,(u)-[(w*)ldxdz+ [,(u)dxdz 
) ] ] J 2 / *  

where we use the fact that fk(U)~O in estimating the last inegral. Since 

u ( ' , t )  = S~/k.t~(t)v and Si/k.r~(t) is nonexpansive for the ~ norm in v [see 

property ($3)] and continuous for the ~ '  norm in t and since both f and fk are 

continuous on ~/~ relative to the ~]  norm on [O, tr], it follows that 

IS~,~.r,(t)v - w*l. <--Iv - w*l, + [fk(S~,k. t , ( t)v)-f(w*)]dxdz 
I I 

jo ~," [k(S{ik.t~(r)v)dxdr 

for all v ~ @~k with v_-> w*. (Note that the ~ closure of ~k equals {v E 

~ k  : v _-> w*}.) Therefore, we can select a sequence {vk} ~, such that vk E ~,~, 

vk => uo, vk+~ =< vk and ~'-Iimk_~v~ = uo. If uk(x,t)=- [S]j~.¢~(t)vk](x) and 

u(x,t) =- [S~t)u,,l(x), then 

uk(x,t)>->_u(x,t) and ~t-l im uk(., t ) =  u ( . ,  t) 
k ~  

by Proposition I in §2. Thus if 0 < x < y*, then x < y(t)  and u~ (x, t) >= u(x, t) > 
0, and so 

[k(Uk(X,t))=[(Uk(X,t)) f o r t > 0 ,  0 < x < y *  

when k is sufficiently large. From this it follows that [k(Uk(X,t))---~]:(U(X,t)) 
pointwise almost everywhere on (0, t )×(0,  y*). Setting v = vk in (3.11) and 

letting k ~ ~ shows that 
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= + ' I, I, 
It f v('r) + f(S~t)uo)dxd~" 

} J T "  

for each t > 0. Since f is nonincreasing and S't(t)u,, > w*, the first integral term 

on the right side of this inequality is nonpositive, and we see that (3.9) is true. 

PROOF OF THEOREM 2. Lemma 6 shows that (3.2) is true. Also. since 

0 _-< u,, _-< c,, for all uo • @,,, we have that S~t)O <= S~t)uo <= S~t)co for all t => 0 by 

($4), and so assertions (3.3) and (3.4) will be established once they are shown to 

be true for u, = 0 and uo = c,,. Thus by (3.6) in Lemma 6 we also see that (3.3) in 

Theorem 2 is satisfied. Let y* and y( t )  be as in Theorem 2 with u, = 0. Thus 

y(t)_-__ y* for all t-_>0 since S~t)O <= w* and y(t)  is nondecreasing by (3.5) in 

Lemma 6. Moreover. if 0 _-< y < Y* then [S~t)O](y) ~ w*(y) > 0 as t----~ ~, and so 

there is a T ( y ) > 0  such that [S~t)O](y)>O for t => T(y). Thus y ( t ) -  > y for all 

t _-> T ( y ) a n d  it follows that y(t)~' Y* as t---~c. Now suppose that uo = c,, and 

y( t )  is the corresponding moving boundary. Then (3.5) shows that y( t)  >_- Y* and 

y(t)  is nonincreasing. Thus let A ---lim,_~ y(t).  Then A _-> Y* and since f ( 0 ) < 0  

and f is nonincreasing, it follows from (3.9) in Lemma 7 that 

ft f y(-r) I S~t)c , , -  w* ], <=lc,,- w* I, + f([S~-r)c,,l(x))dxd~. 
) j ~ *  

ft fv(~) <-- l c, ,-  w *J, + f(O)dxdr <= I c, ,-  w *r, + t(A - y*)f(O). 
) JT* 

Letting t--->~ shows that A = T* and completes the proof of the Theorem. 

The original physical model motivating the study of these equations is the 

diffusion of oxygen in absorbing tissue. In this case the solution u(x,t)  is the 

concentration of the oxygen and moving boundary y( t )  is the penetration depth 

of the oxygen into the tissue. Initially there is no concentration of oxygen in the 

tissue and the oxygen concentration is held equal to the constant co at the surface 

[this corresponds to the Dirichlet boundary condition at x = 0 and j = D in 

equation (2.18)]. Once the penetration depth yo ( t )  has approximately reached 

equilibrium state [see (3.4) in Theorem 2 with j = D ] the surface is sealed (this 

corresponds to the Neumann boundary condition at x = 0 and j = N in equation 

(2.18)] and the penetration depth yN(t) then reaches back to the surface [see 

(3.4) in Theorem 2 with j = N]. Therefore, the two principal equations to be 

analyzed are the system 
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(3.12) 

u,°(x,t) =4'(u°(x,t))~x +[(u°(x, t)) ,  t > 0 ,  0 < x < 3 , ° ( t ) ,  

u°(O,t)=co, u ° ( y ° ( t ) , t ) = 4 ' ( u ° ( r ° ( t ) , t ) ) ~ = O ,  t > 0 ,  

u°(x,O)=O for 0 <  x < or, 

and the system 

(3.13) 

u,~(x,t) =¢b(uN(x,t))xx +f(uN(x,t)),  t>O, 0 < x < y " ( t ) ,  

4'(u°(O,t))x=O, u~(y~( t ) , t )=4 ' (u~(r~( t ) , t ) )x=O,  t > 0 ,  

uN(x ,O)  = w*o(x), 0 < x  <0 ,  

where w* is as in Theorem 2: 

(3.14) 

ck(w*)"(x)+f(w~(x))=O, 0 < x  < 3~*, 

w~,(0)= c,,, wo(r~,) = 4'(w,~)'(v~*,)=0, 

w * ( x ) = 0  for 3 '*< x -< o ". 

We assume now that f ( 0 ) < 0  and 3,*< o-. 

According to Theorem 2, we know that u°(x , t )~  wg(x) and 3"°(t)~ 3"~ as 

t ~ ,  and that uN(x, t )~O and 3 'N( t )~0  as t ~ .  However,  our next result 
shows that the precise asymptotic behavior in these two cases is considerably 

different. 

THEOREM 3. Suppose that 4' is ~ on (O, oc) and g(~:)~/(4,-'(,~:)) is ~'+" on 
[0,oc) for some a > O. Suppose also that f ( 0 ) <  0, w * is the solution to (3.14) with 
3'* < o', u o 3' o is the solution to (3.12), and u N, 3" N is the solution to (3.13). Then 

(i) u° (x , t )~w~(x ) ,  3"°(t)'~3"*oast---,oo, y°(t)<3"~,, 
and u° (x , t )<  w*(x) [or all t>O, x E ( 0 ,  y~); and 

(ii) uN(x,t)~O, 3,N(t)~O as t~oo and there is a finite r > O  
such that uN(x,t)=-O, 3,N(t)=O for all t >= z, 0 < x <-<_ or. 

The hypothesis that ~b is ~ ~ on (0, ~) is not very restrictive, since 4' is normally 

of the form ~b(u)=-du" where d > 0  and m _-> 1. The function g(~)_-- f(~b-'(~c)) 

is required to be c¢,+~ on [0,oo) so that the results in [19] can be applied. Note 

that if 4'(u)-= du" and f(~)-= b~5 k, then g (~)=f (4 ' - i (~ : ) ) i s  c¢,+- on [0oo) i f  

k = 0 or if k _-> m. Of course, the main point in Theorem 3 is that the moving 

boundary in (3.12) remains strictly less than its limiting value for all time, 

whereas the moving boundary in (3.13) actually equals its limiting value after a 



Vol. 54, 1986 POROUS MEDIUM E Q U A T I O N  99 

finite amount of time. For the proof of Theorem 3 we use several preliminary 

lemmas, each of which is assumed to be under the hypotheses of the theorem. 

LEMMA 8. Suppose  that  6 >- 0, f~ E ~ a n d  z .  ~ ~ is such that  &(z,,) is twice 

cont inuously  differentiable on [0, o-]. /f  

cb(z,,)" + f~(z.)>-_ O 

(3.15) z.(0)_- < c. and  

then 

PROOF. 

for z ~ lO, o-l, 

z.(g) = a, 

o > o > f o r a l l t >  >__ Sa.r~(t)z,, = Sa.f~(s)z,. = z .  = s O. 

Setting v. = ( I  - hA~t~) - ' z ,  we see that 

v , , -  h [ ¢ ( v . ) "  + f~(v,,)] = z.>-_ z , , -  h [ ¢ ( z , , ) "  + f(z, ,)] 

and hence that 

(3.16) v . -  z. >_- h [~b(v.) - ,;b (z.)]" + h I f ( v .  ) - f(z.)]. 

Let x .~[0,o-]  be such that 

¢ ( v . ( x . , ) ) -  qb(z .(x .))  = rain {~b(v.(x))- c b ( z . ( x ) ) : x  @ [0, ~1}. 

Since v.(O)= c. >= z,,(x.) and v . ( e )  = ~ = z.(o-) we see that a negative minimum 

for ¢ ( v . )  - ¢ ( z . )  (and hence for v . -  z,) can occur only if x .  E (0, o-). Since this 

would imply that {~b(vo)-~b(z.)]"(x.)->_0 and since f~ is nonincreasing, it is 

impossible for (3.16) to hold at such an x,,, and we conclude that &(v.)_-> &(z.), 
and hence v,,>_-z.. Thus ( I -  o , > h A  ~.0 z ,  = zo and the order-preserving property 
(2.14) in Lemma 2 shows that 

( / _  o - .  > = hA~,~) z . = ( l  o .+. o i > - h A  ~.r.) z .  >-_ "'" > ( I  - h A  ~ .0  z, ,  = z .  

for all h > 0  and positive integers n. Setting h = t i n  and letting n--.~c implies 

that S~,r , ( t )z .= z .  for all t_->0 by (2.15). Finally, using the order-preserving 

property ($4), if t _-> s => 0 then 

D S ~ d t ) z ,  o o o = S ~ d s ) S ~ . d t  - s)z , ,  >-_ S ~ d s ) z ,  

and the proof of this lemma is complete. 

LEMMA 9. Suppose  that  {&}~ is a decreasing sequence  in (0, c.) with 

l imk~& = 0 and  that {f~}7 is a sequence  o f  q ~  func t ions  with fk E o ~ ,  fk.~ <-- fk 

for  k >= 1, a n d  l imk~ fk (~:) = f(~:) uni formly  on [rl, co] for each  ~ > O. For each  
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k >= 1 let v k be the solution to the semilinear parabolic equation 

V~=V~x+fk(6- ' (Vk)) ,  t > 0 ,  0 < X  <tr ,  

(3.17) Vk(0, t) = 6(C,,), Vk(O',t)= 6(6k), t >0 ,  

vk(x,0) = 6 ( ~ ) ,  0 < x  <~r, 

then 6(6k)  < - vk(x , t )  < Oh(co) for all (x , t )E  [0,o'] × [0,~) and v k is ~ in both x 

a n d  t on  [0,or] × (0,~). Moreover, vk,(x,t)>=O for all (x , t )E  [0,o-] × (0,~) and 

~- l im,~o+vk( ' ,  t) = 6(6k) for each k >= 1. 

P~oov. The maximum principle shows that 6(6k)_- < v k =< 6(c,,) and since h 

and 6 - '  are %v~ on [6(6k), 6(c,,)] and (3.17)is a semilinear parabolic equation we 
also have that v k is ~ on [0,or] × (0,~). Noting that 

v ~x(x, o) + h (6-'(v~(x,  0))) = h ( 6 - ~ ( 6  (~k))) = h ( ~ )  = 0 

since f~ E , ~ ,  we see from the preceding lemma (with 6 ( u ) -  = u) that v~_->0. 

Since (3.17) generates a C,,-semigroup in 27 ~ we also have that 

V k ( ' , t ) o v k ( ' , O )  - 6(¢5k) is ~ '  as t o O +  and the proof is complete. 

LEMMA 10. Suppose that Ix - max{6'(s¢):0 =< s ¢ --< c,,} and that v is the solution 

to the semilinear moving boundary problem 

v , = g v x ~ + g f ( 6 - ' ( v ) ) ,  t > 0 ,  O < x < A ( t ) ,  

(3.18) v(O, t )=6(co) ,  v ( A ( t ) , t ) = v ~ ( A ( t ) , t ) = O ,  t > 0 ,  

v (x ,0 )=0 .  

Then the solution u ° to (3.12) satisfies 

(3.19) 6 ( u ° ( k , t ) ) < = v ( x , t )  for all t >->_ O, x E [0,o']. 

PROOF. For each k => 1 let v k be the solution to (3.17) and let ek > 0 be such 

that I v k ( . ,  ek)It =< 2~r6 (Sk). We know from Proposition 1 that v k o v as k o ~, 

uniformly on [0, o-] x [0, T] for each T > 0 (see also Lemma 1 and equation (2.14) 
in [19]). If u k = 6-~(v k ( . ,  ek)) then u k is ~"  and in D ( A  ~.I,). Thus, by Lemma 4, 
u~(x , t )=  o k [Ss~.tk(t)Uo](X) is a classical solution to 

u' ,=6(uk)xx+[~(u~) ,  t > 0 ,  0 < x < ~ ,  

(3.20) uk(O,t)=Co, u~(tr, t)=t~k, t > 0 ,  

u~(x,O) = 6-'(v~(x,E~)), 0 <  x < ,r. 
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Since vk,(x, ek)_-> 0 by L e m m a  9, we see that 

¢ (u k (x, 0)),~ + £ (u k (x, 0)) = v L(x, ~ ) + f~ (4,-'(v k (x, ~k))) --> 0 

and it follows from L e m m a  8 that u,k_->0 on [0,o-]x(0,oo).  There fo re ,  if 

w k ( x , t )  =- 4 ' (uk(x , t ) ) ,  then 

w, ~ = 4, ' (uk)u ~ -  < ~,u. ~ = t~ [4'(u ~).x + f~(u~)] = , w ~ . +  M~(4,- ' (w~))  

and it follows from the maximum principle that w k _-< z k where z k is the solution 

to 

z,  ~ = ~ z L +  ~ h  (4'-'(z ~)), 

zk(O,t)  = ¢(Co), zk(tr, t) = 6k, 

zk(x,O) = v~(x,~k). 

There fo re ,  4, (u k (x, t)) _--- z ~ (x, t) for all t _--- 0, x E [0, o-], and since u k ~ u o and 

z k ~ v  as k----~, we see that L e m m a  10 is true. 

PROOF OF (i) IN THEOREM 3. Since z *(x)  -= 4, (w*(x ) ) , ) t  * = y *  is the equilib- 

rium solution to (3.18), we have from T h e o r e m  3 and Proposi t ion 3 in [19] that 

the solution v,h to (3.18) satisfies v ( x , t ) <  z * ( x )  and h ( t ) <  7*  for all t_->0, 

x E [0, y*).  Thus,  using (3.19), 

u°(x,t)<= 4'-'(v(x,t))< 4'-'(z*(x))= w~,(x) 

and y ° ( t )  < - h ( t ) <  y *  for all t _->0 and x E (0, y*).  This completes  the proof  of 

part  (i) of T h e o r e m  3. 

LEMMA 11. Suppose that 6 >- 0, [~ E ~8 and zo E @~ is such that 4' (zo) is twice 

continuously differentiable on [0,t  r]. I f  

4'(Zo)"+f~(z,,)<=O f o r x ~ [ O , ~ r  l, 

4,(Zo)'(O)_-_O and Zo(O')=& 
(3.21) 

then 

N N S~.r~(t)Zo <-_ S~,r~(s)zo <= Zo 

INDICATION OF PROOF. Following the 

Vo = ( l  - h A  N -1 s.f,) zo then 

v~,- zo _-< h [ ¢ ( v o ) -  ¢(zo)]" + h [ f (vo) -  f(z ,)] .  

Now let xo E [0 , a ]  be such that 

for all t >- s >-0. 

ideas in the proof  of L e m m a  8, if 
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& (vo(xo)) - d (z,,(xo)) = max{~b (Vo(X)) - & (z,,(x)): x E [0, o']}. 

If this maximum is positive then xoE[0,  cr) and if Xo=0 then 

~b(vo)'(0)-&(z,,)'(0)_->0 and it follows that [ck(vo)-&(Zo)]"(xo)<=O. This is 

impossible since fa is nonincreasing and we conclude that (I - hA " ~-~ s.fj Zo_<- zo for 

all h = 0. The assertions now follow analogously to the proof of Lemma 8. 

Now suppose that {6k}~, and {/~ }~, are as in Lemma 9 and for each k _-> 1 let yk 

be the (unique) solution to the boundary value problem 

y~(x)+ fk(cb-'(yk(x))), 0 < X < y * ,  

(3.22) yk(0) = 4,(Co), Yk(3'*)= 'b(~%). 

Then the maximum principle implies that ~k =< yk(x)_-< co for all x E [0, y*], and 

hence that y~,(0) ~ 0 (in fact, yk E ~a, with ~r = y*). By Lemma 11 with d(u)---  u 

the solution zk to 

z~=z~x+/~(~-'(z~)), t>0, 0<x<-/*, 

(3.23) zxk(0,t)=0, z k ( r * , t ) = 4 , ( & ) ,  t > 0 ,  

zk(x,O)=y~(x), 0 < x < r *  

satisfies zk,(x,t)<-_-O for all (x, t)E[0, .y*]×(0,oo).  Since (3.23) is a semilinear 

equation and/k(~b-~(.)) is ~ ,  the solution z k is ~ in (x,t) for t > 0  and also 

satisfies Z k ( ' , t ) ~ y k  in ~J  as t---~0+. Moreover, the solution yk to (3.22) 
satisfies yk ~ &(w*) in ~ as k ~o¢, and it follows that positive numbers ek can 

be selected so that 

&-~(z ~ ( . ,  ek )) E D ( A  ~.r~) and is ~ ,  

k (3.24) z,(x,  ek)=O, and [zk(- ,ek)  - w~, l t~0 

LEMMA 12. 

(3.25) 

as k ----~oo. 

For each k >->- 1 let v k be the solution to 

V~,=g~(Vk)xx+fk(Vk), t>0, 0<X<~'*, 

~b(vk)x(0, t ) = 0 ,  Vk(T*,t)=tSk, t > 0 ,  

v~(x,0)=4~ '(z~(x,E~)), 0<x<v*. 

Then v k is ~2 in x and ~z in t on [0,o'] × [0,~), vk,(x,t)<=O for all t > 0 ,  and 

(3.26) uN( • , t) = 2"-  iim vk( • , t) 
k ~  

uniformly for t in bounded subsets o[ [0,oo). 
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PROOF. If v~(x)=--cb-'(zk(x, ek)) for 0=<x=<3, * then v,, Is c~ and in 

D(A~].rk) by (3.24), and since 

vk(x, t) = [S~.r,(t)v~,](x) for (x, t) E [0, T*I × [0,~), 

it follows from Lemma 4 (with cr = ~/*) that v k is ~2 in x and ~ in t. Since 

~- ' ( zk ( - ,~ ) ) - - , , ¢ ,  '(,/,(w~,))= w* 

in ~ as k--->~, we may apply the proof techniques in Lemma 5 to show that 

v k ( . ,  t)---> U N (. ,  t) is ~ ,  uniformly for t bounded. Notice that the convergence is 

not monotone; however, (2.29) in the proof of Lemma 5 is still valid and the 

proof follows analogously using the injectiveness of (1 - hA ~). Since z,~(x, ek) _-< 

0 we have from Lemma 11 that 

N k k S 8~.t,(t)v o <-- S ~.t~(s)v ~o <= v o for all t _-> s _-> 0, 

k and so v,(x,t)<-O for all t >0 .  This completes the proof of Lemma 12. 

k < PROOV OF (ii) IN THEOREM 3. Since v,(x , t )=O, it follows from (3.26) that 

uN(x,t) is nonincreasing in t and hence yN(t) is nonincreasing for t => 0. This 

shows that yN(t) ,[ 0 as t---> a¢. Since the solution v k is nonincreasing in x (in fact, 

v k ( ' , t ) E  ~ )  we have that qb(vk(x,t)) is nonincreasing in x, and since 

'9 [,b (v ~ (0, t))] = 0  
0x 

by the boundary conditions in (3.25), we see that 

0z 
,gx~[4~(vk (O,t))l <= O. 

From the differential equation in (3.25) it now follows that 

Vk,(O,t)<-]:k(vk(O,t)) for all t > 0 ,  k=>l.  

From this it follows that vk(O,t)<= ~,k(t) for all t ->0, where ~,k is the solution to 

the ordinary differential equation 

~ ( t )  = h (,,k (t)), 

Since v k is nonincreasing in x, 

(3.27) ok(x, t) <= Vk(t) 

Note that if v is the solution to 

uk(0)=c0, t = 0 .  

for all t -> 0, x E [0,y*]. 
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v'(t)= f(v(t)), v(O)= co, t >0, 

then ~,'(t) -< f(0) < 0 for as long as v(t) > 0, and it follows that there is a t~ > 0 

such that v ( t ) > 0  for t<t~ and ~,(t)=<0 for t>=h. Then vk(t)--*v(t) for all 

t E [ 0 ,  t~] as k--->~, and it follows from (3.27) that uN(x,t)<=v(t) for all 

(x, t ) ~  [0, ~,*] x [0, t~]. Since ~,(t~)= 0 the proof of Theorem 3 is complete. 

§4. Regularity of solutions in a special case 

The existence results obtained in §2 are of a very general nature and the 

purpose of this section is to indicate that in certain situations one can establish 

additional continuity and differentiability properties of the semigroups gener- 
ated by this moving boundary problem. In the semilinear case [i.e., the case 
when cb (u)=- du ], it is shown in [19] that the solution u j = u j (x, t) to (2.18)is cgt 
in t and ~2 in x so long as uJ(x,t)>O, and that it is ~"  in t and ~ + "  in x on 

[0,or] x (0,~) for some v > 0. However,  the solution always has a singular point 

in its t partial derivative (and hence in its second x partial derivative) at the 

moving boundary. Therefore, even in the semilinear case, solutions to (2.18) are 

not smooth on all of (0,or)x (0,oo). 

In this section we consider the case when ~b(u) -= du" where d > 0 and m _--> 2. 

Thus, our problem has the form 

u~x, t) = d(ui(x, t))"~, + f(uJ(x, t)), 

(4.1) 

0 < x < 3 / (0 ,  t > 0 ,  

uJ(x,0)= Uo(X), 0<x  <o-, 

uJ(3/(t),t) = (u~(3,J(t),t))7"=O if t >0 ,  3,J(t)< or, 

uJ(x,t)=O if yJ(t)_-< x < or, 

uJ(O,t)=co i f j = D  and (uJ (0 , t ) )7=0  i f j = N ,  

where Uo G 9o. Recall that if A ~ is defined by (2.20) and S~ is defined by (2.25), 

then the (generalized) solution u ~, 7 j to (4.1) is defined by 

ui(x,t) = [S~t)uo](x) for t>=0, x E[0,o-],  

(4.2) vi( t )  = inf{y ~ [0, or]: uJ(x, t) = 0 for x E [y, or]}. 

Our first result shows that solutions to (4.1) are ~ in x. 

THEOREM 4. Suppose that m >= 2, f is ~'  and u i is defined by (4.2). Then 
(ui(x,t))," exists on (0,or)×(0,oo) and is continuous in x. In particular, 

(uJ(Ti(t),t)~ "= 0 for all t>O such that , / J ( t )<  or. 
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For the proof of this theorem we use a preliminary lemma, which follows the 

methods of Aronson [2] and Kalashnikov [15]. For each 8 > 0 the notations 

~,@~, and S~.~ are as in (2.2), (2.3), and (2.15), respectively. 

LEMMA 1.3. Suppose that 6 > 0, vo E ~ ,  f~ ~ ~8 is ~ '  with f8 (8) = O, and 

vJ(x , t )  =- IS;.i ,(t)](x) where Sg.I, is defined by (2.15) with q~(u)-~du "~ where 

m >= 2. Suppose also that O < a < b < or and O < z < T Then 

( 4 . 3 )  I(v'(x,t))7-'l<=c f o r ( x , t ) E ( a , b ) x ( z , T )  

where the constant C depends only on m, a, b and z. Moreover, if vg '-~ is qg2 on 

[0,~r] then (4.3) remains valid with r =0 ,  where C now depends on 

max {} (Vo(X))7 ' i : x  E [0, o-]} instead of z. 

INDICATION OF PROOF. Since we follow the methods of Aronson [2] and 
Kalashnikov [15], many of the details of the proof are omitted. For notational 

convenience set R = (0, ~r) × (0, T) and R * = (a, b) × (z, T). If 

r o e  ~g~f3 D ( A g J  then v i is a classical solution to 

v~=(vJ)'~"~+fs(v~), t > 0 ,  0 < x < o ,  

v i ( x , 0 )  = Vo(X), 0 <  x < ~r, 

(4.4) vJ(~,t)  = 8, t > 0 ,  

v~(O,t)=Co i f j = D  and (vJ(O,t))7=O i f j = N .  

Also, 8 =< vJ(x,t)<--: co on R by Lemma 4. Define w = (m/(m - 1))v "-~ so that 

( m - 1 )  ' ' '"-') 
v = - w - = ~ ( w ) ,  

m 

and let g(w)--- f e ( t z (w)) /~(w)  = f~(v)/v. Then 

w, = (m - 1)ww~x + w2~+(m - 1)wg(w). 

Now for 0 < r = < l  let h ( r ) = N r ( 4 - r ) / 3  where N = c Y  -~ and define p-= 

(h-l(w))~. Then, as in [2], 

~ ( p 2 ) _ ( m _ l ) h p p ~  = m h , , + ( m _ l ) h \ h ,  ] p4 

" 1" rh(w)g(h(w)) 

Now let ((x, t) ~ [0,1] be in ~2(/~) and assume that ~'(x,t)---1 on R* and 

~(x, t ) - 0  in a neighborhood of the lower and lateral boundaries of R. Also let 
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(x, t )-p(x,  t)- on R. At a point (x,,, to) E R where z attains its maximum z ( x , t ) -  ~ " 

value, we have 

and (m - l )hz~  - z, ~ 0 .  z~ = 2~2 pp~ + 2 ~ p -  = 0 

This inequality takes the form 

(4.5) 

Since 

_p4~,_ m h " + ( m  - 1)h _<- [(~, - ( m  - l)h~ff~ +3(rn - l)h~rT,]p" 

- g~xp m + l )h '  + 2(m - l )h  

+ (m - t.)p~'-( h g ( h )  ] 
\ h ' l ;  

lhg(h)]  h _ l m _ l [ (m - 2)f~ + f'~] <-- 0 

we have that p (hg (h ) /h ' ) x  < 0, and the last term in (4.5) may be dropped. As in 

[2], we now obtain that 

2~2p~<C,p~-+~C2lp[  3 and z 2 < C . + C ~ / 4  

and the assertion of this lemma follows whenever voE C~ND(A~.r~) .  The 

general case of v,,E ~ now follows by ~t(0,  o') approximations. 

INDICATION OF THE PROOF OF THEOREM 4. Let (x0, t,,) • (0, o') × (0, ~) and select 

a, b, ~" and T such that (x., t,,) E (a, b) × (z, T). Let 6, J, 0 and for each n => 1 select 

a f. ~ o%~, and a u, E D(A'~,.r,) such that f, ~, f uniformly on (~, co] for each rt > 0 

and u. ~ u in ~ .  It follows from Proposition l at the end of §2 that if 

wJ.(x,t)=-[S~..r.(t)u.](x),  t > O ,  O<=x<=o ", 

then w~.( • , t) J, u '(  • , t) in ~ as n ~ ,  uniformly for t bounded. By Lemma 13, 

I (w ' . (x , t ) )7- ' l<=C f o r a l l ( x , t ) ~ ( a , b ) x ( z , T ) ,  

where C is independent of n (and depends only on a, b, z and T). As in [2], using 

the fact that wJ. $ u j, we can obtain that 

I(u'(x, to)y" '-(u'(y, t,,))"-' I =< f i x  - Y l 

and hence that 

l u ' ( x , t , , ) -  u'(y, to)l ~ C, lx - y I 'm-')-' 
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for all x. y E (a, b). In particular, if ui(y.  t,,) = 0 and l Y - x [-<_ 8, then l ui(x,  t,,)l <- 

C,6 (" ')-'. If ui(x.  t) > 0 and t > 0, it follows as in Oleinik et al. [20] that u{ exists 

and is continuous in x. Thus the same is true for (ui)7. Therefore, it suffices to 
prove the assertion for points (x,,, t,,) such that uJ(x,,, t,,) = 0, and this was done in 

Aronson [2]. 

REMARK. Using the fact that the semigroups S~,.ro preserve order in ~ ,  we 

can show as in Oleinik et al. [20] that u i ( x , t )  = [S 'r( t )u.](x) is  in fact a classical 

solution to (4.1) at all points (x , t )  such that u i ( x , t ) > O .  

Our final result shows that the generalized solution to (4.1) is continuous on 

(0,o ' )x (0o0) and in fact is Hoelder continuous on each compact subset of 

(o, , ,)  x (0, 09. 

THEOREM 5. Suppose that u(,E@o, f is ~ '  and u ( x . t ) = - [ S ~ t ) u , ] ( x )  for 

(x. t) @ [0. tr] x [0,0@ Then u is continuous on (0. or) x (0 ,~)  and for each a, b, ~" 

and T with 0 < a < b < r and 0 < r < T, there is a constant C, depending only on 

a. b,.r and 7", such that 

[ u ( x , t ) -  u ( y , t ) [ =  C [ x  - yl ~, 

(4.6) 
l u ( x , t ) -  u(x,s)l<-_ C [ t -  sl  t~(~÷2, ', 

for all x, y (E [a, b] and t, s ~ [r, T], where [3 = (m - I) '. Also, ,r may  be replaced 

by 0 /f N = max{l(u, , (x))7- ' l :  x ~ [0, ~1} < ~ and C depends on N. 

INDICATION OF PROOF. The first assertion in (4.6) follows from the proof of 

Theorem 4. To prove the second assertion in (4.6) it suffices to show its validity 
for appropriate approximations 

w ( x , t ) - l S ~ . r M ) u ] ( x ) ,  t>=O, O<-_x<=~ 

where 6 >0 ,  6 ~ 0, f~ E ~ ,  f~ ,1, f and u~ E D ( A ~ . O N  c ~  u~ ~ u,, in ~ ,  and the 
constant C in (4.6) is independent of 6. By Lemma 13 there is a C ~ > 0  

(independent of 6) such that I(w (x, t))7-"l <-- C~ for (x, t) E [a, b] x [I", T], and so 

[ w ( x , t ) -  w(y,t)l  =< co(Ix - y l) 

for all (x, t),(y, t) ~ [a, b] x It, T] where co(r) = C~r ~ [[3 = (m - 1)-']. Now we 

follow the arguments of Kruzhkov [17]. Let a < x,,< b and ~'==- to < T and set 

d = min {1, x . -  a, b - x,,} > 0. Since 0 < w (x, t) < c,, and I(w)7-~[ =< C., there is a 

positive constant M such that mC~ <= M, mc,7-~<= M and -[,(Co)<=4coM. For 

0 < 0  < d  a n d 0 < A t < T - t , , d e f i n e  

O'  = {(x, t ) :  t , ,<  t < t,)+ a t ,  Ix - x,,)_- o} 
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and let F denote the lateral and the lower sides of O'. Also, se t /z(p)  = 8coM/p 2, 

t) = w(xo, t,,) +- [w(p)+ t z ( p ) ( t -  t,,)+ 2~c,° (x - x.)2] /) ±(x, 
I_ P J 

and 

for all ( x , t ) ~  O'. It 

(x,t) ~ F. If 

z±(x,t) = w ( x , t ) -  o-+(x,t) 
+ 

is routine to check that z ( x , t ) = 0  and z-(x,t)>=O for 

L+(v) = m(w)7- 'vx + rnw"-'v~ - v, 

then L+(w) = -[~(w)>-O and L+(v+)<-O. Thus L+(z+)>-O and the maximum 

principle implies that z +(x, t) < 0 in O'. Thus w (x, t) =< v+(x, t) and 

w(t,, + At, x,,)- w(t,,,x,,) <= o~(p ) + ~z(o )At. 

Define 

Then 

L-(v)  = mw"-~v~x - v,. 

L- (z - )  = - m ( m  - 1)w m 2 ( w x ) Z - f ~ ( w ) + ~ w m - ' - t ~ ( p )  

4co 8coM 
<- -f~(c,,)+ Mp2  p2 

< - f~ (c  ) - 4 c  M 0 0 

< 0 .  

By the maximum principle z-(x, t)>= 0 in O'  and it follows that 

w(to + At, xo) - w (to, xo) >-- - [w(p) +/~ (p)At]. 

Therefore, 

and so 

I w(t,, + At, x, , )-  w(to, x,,)] <= o~(p)+ t~(p)lXt 

I w(to + At, xo)- w(t,,,x,,)] <-,inf { , .o(p)+ ~ (p )a t }  _--- C;(at) ~'~+~'-' 

and the assertions in Theorem 5 are seen to be true. 



Vol. 54, 1986 POROUS MEDIUM EQUATION 109 

REFERENCES 

1. N. D. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary 
value problem for the porous medium equation, Indiana Univ. Math. J. 30(1981), 749-785. 

2. D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math. 
17(1969), 461-467. 

3. D. G. Aronson and Ph. Benilan, Regularite des solutions de l'equation des milieux poreux 
dans R N, C. R. Acad. Sci. Paris SeE A-B 2880979). 

4. D. G. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate 
nonlinear diffusion problem, J. Nonlinear Analysis - -  Theory, Methods and Applications 6 (1982), 
1001-1022. 

5. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Nordhoff 
International Publ. Co., Leyden, 1976. 

6. F. G. Berryman and C. F. Holland, Stability of the separable solution for fast diffusion, Arch. 
Rat. Mech. Anal. 74(1980), 379-388. 

7. H. Brezis and A. Pazy, Convergence and approximation of nonlinear semigroups in Banach 
spaces, J. Functional Anal. 9(1972), 63-74. 

8. M. G. Crandall and T. Liggett, Generation of semigroups of nonlinear transformations on 
general Banach spaces, Amer. J. Math. 93(1971), 265-298. 

9. M. G. Crandall and M. Pierre, Regularizing effects for u, = A~(u), Mathematics Research 
Center TSR # 2166, University of Wisconsin, Madison. 

10. J. Crank and R. S. Gupta, A moving boundary problem arising from the diffusion of oxygen in 
absorbing tissue, J. Inst. Math. Appl. 100972 ), 19-33. 

11. L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations, 
in Nonlinear Evolution Equations (M. G. Crandall, ed.), Academic Press, New York, 1978. 

12. L. C. Evans, Differentiability of a nonlinear semigroup in ~ ,  J. Math. Anal. Appl. 60(1977), 
703-715. 

13. A. Fasano and M. Primicerio, A critical case for the solvability of Stefan-like problems, Math. 
Meth. Appl. Sci. 5(1983), 84-96. 

14. J. A. Goldstein, Approximation of nonlinear semigroups and evolution equations, J. Math. 
Soc. Japan 24(1972), 558-573. 

15. A. S. Kalashnikov, On the differential properties of generalized solutions of equations of the 
nonsteady filtration type, Vestnik Moskov Univ. Ser. l, Math. Mech. 29(1974), 64-68 = Moskow 
Univ. Math. Bull. 29(1974), 48-53. 

|6. S. Kamenomostskaya, The asymptotic behavior of the solution of the filtration equation, lsrael 
J. Math. 140973), 76-87. 

17. S. N. Kruzhkov, Results concerning the nature of the continuity of solutions of parabolic 
equations and some of their applications, Matem. Zametki 60969), 97-108. 

18. D. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear 
Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968. 

19. D. M. Lyons and R. H. Martin, Jr., A moving boundary problem modelling diffusion with 
nonlinear absorption, J. Differ. Equ. 51(1984), 267-294. 

20. O. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-Lin', The Cauchy problem and boundary 
problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR, Ser. Math. 
22(1958), 667-704 (in Russian). 

21. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 
Prentice-Hall, Englewood Cliffs, N J, 1967. 


